
Kowanyama Aboriginal Shire Council

Drinking Water Quality Management Plan

Version 2, July 2012 Update in response to OWSR additional information request

Registered Drinking Water Service Provider Number 142

Table of Contents

Intr	oduction	3
Re	gistered Service Details	3
Deta	ails of Infrastructure	4, 5, 6
3.2 and 10 3.3 3.4 3.5	Treatment Distribution and Reticulation Key Stakeholders	
	Water Quality Information	
5.2 5.3	Methodology Acceptable Risk Hazard identification, risk assessment and uncertainty matrices haging Risks	
6.2 6.3	Risk Management Improvement Program Operation and maintenance procedures Management of incidents and emergencies Service Wide Support – Information Management	
Ор	erational and Verification Monitoring	
7.2	Operational Monitoring Verification Monitoring (Reportable to DERMS) 	
	Reg Deta 3.1 3.2 and 10 3.3 3.4 3.5 Ider 4.1 Ass 5.1 5.2 5.3 Mar 6.1 6.2 6.3 6.4 0pc 7.1 7.2	 3.2 Source

1 Introduction

This Drinking Water Quality Management Plan (DWQMP) documents Kowanyama risk assessment and risk management process and provides a basis on which to maintain (and improve) the safety of the supply of Kowanyama drinking water. It describes what is actually undertaken and must be updated when practices change.

The DWQMP has been developed to meet the requirements of the *Water Supply (Safety and Reliability) Act 2008.* The Act is administered by the Office of the Water Supply Regulator who oversees compliance with drinking water monitoring and reporting requirements against drinking water quality standards.

2 Registered Service Details

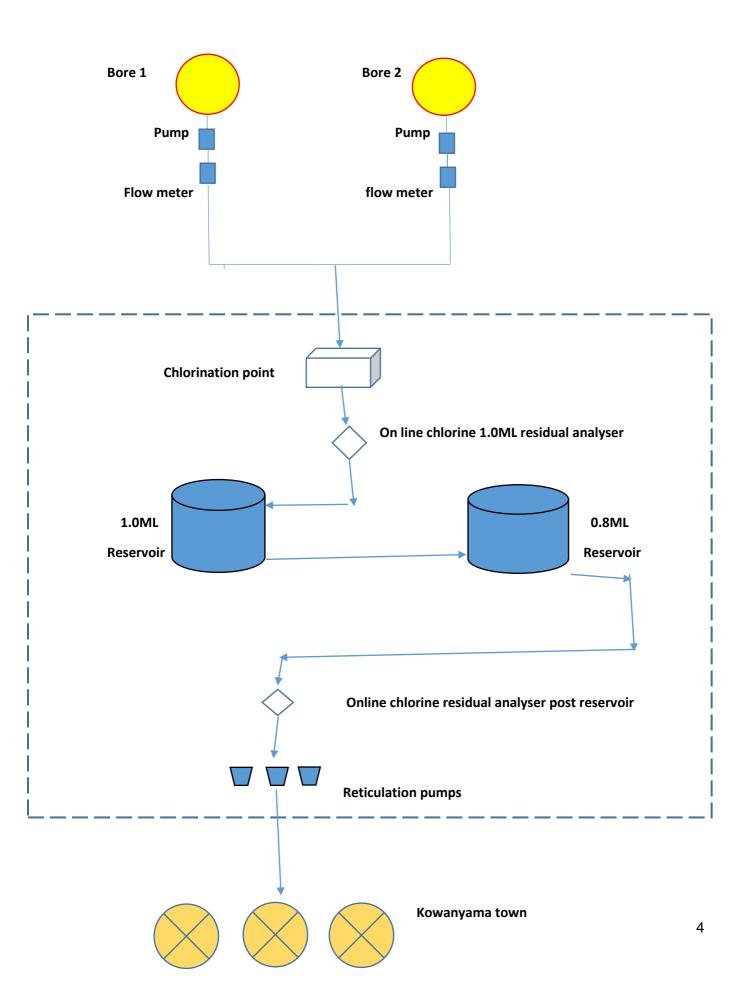
The Kowanyama Aboriginal Shire Council community lies 25 km (as the crow flies) from the West coast of the Gulf of Carpentaria in the South-Western region of the Cape York Peninsular, and 600 kilometers North-West of Cairns.

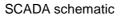
Scheme	Owner &	Communities	Current		Projected in 10 years			
name	Operator	served	Рор.	Connections	Demand ML/d	Pop.	Connections	Demand ML/d
Kowanyama	Kowanyama Aboriginal Shire Council	Kowanyama	1200	260	0.9	2000	300	1.5

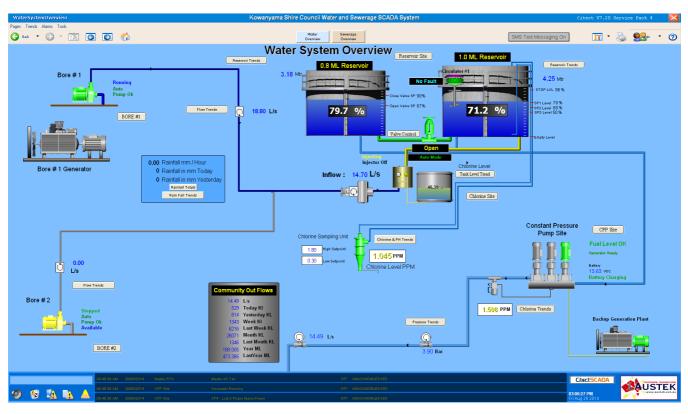
The average annual growth rate in Kowanyama Shire LGA between 2006 and 2011 was 1.9 per cent. (*Queensland Regional Profiles*, Office of Economic and Statistical Research, Queensland Treasury and Trade.)

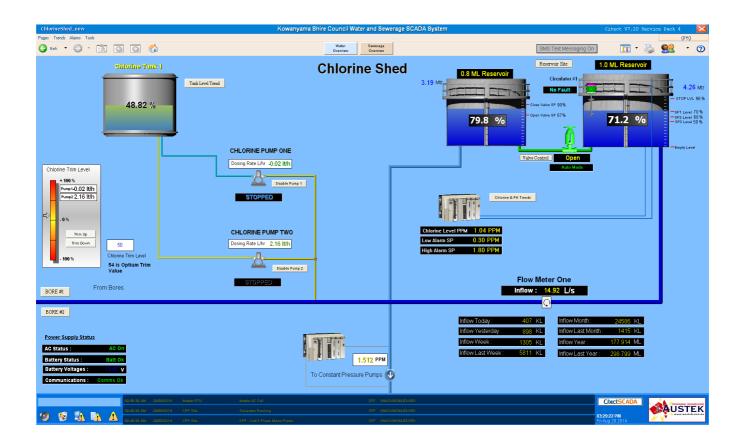
Kowanyama Aboriginal Shire Council

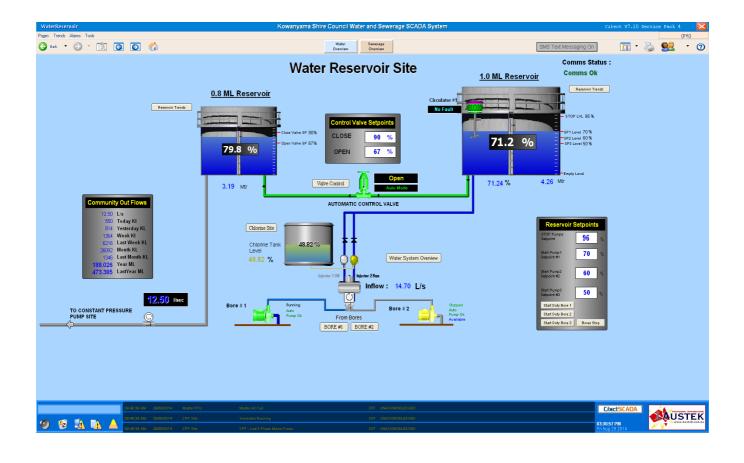
30 Chapman Road Kowanyama 4871


ABN: 86 255 216 480


Phone: 07 4083 7132 Fax: 07 4060 5124

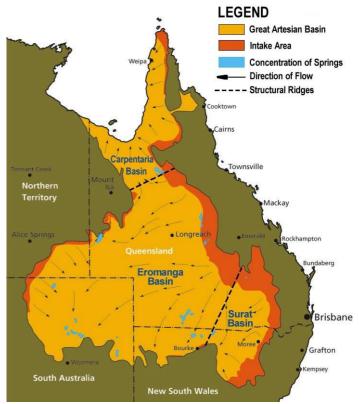

CEO E-Mail: Emil.Moul@kowanyama.qld.gov.au


Website: http://www.kowanyama.qld.gov.au/kac/


Details of water infrastructure-Kowanyama water supply schematic

3.1 Catchment Characteristics

Description¹


Kowanyama's artesian bore water is sourced from the Bulimba Formation overlying the Carpentaria Basin.

The Bulimba Formation is predominantly recharged via infiltration of rainfall in outcrop areas and via some upward leakage from underlying GAB aquifers, as shown in the diagram alongside. In the Mitchell River region of the basin, recharge occurs primarily along the elevated margins of the basin on the western side of the Great Dividing Range, remote from the area of utilization.

The Bulimba formation contains artesian aquifers typically not in hydraulic connection with each other.

A study published by the Department of Natural Resources and Mines (Qld) in 2005, found that near continuous pumping for the Kowanyama community water supply had resulted in a localized depression of approximately 25 m in potentiometric head. This drop in pressure had not been measured in bores outside the Kowanyama town area, suggesting that there was very limited connectivity between the discontinuous aquifers of the Bulimba Formation.

Pastoral production from native pastures is the

most extensive land use within the region. It was reported that historically there have been scattered, relatively small-scale mining activities.

There is a strong seasonality in rainfall patterns, with most rain falling in the wet season from November to March and very high dry season evaporation.

3.2 Source

Local Area Characteristics of Bores

Characteristics	Details	
Topography	Flat. Not normally able to flood the bores, however water draining off the town may cause temporary flooding within town areas.	
Soil type	Aquifer is not thought to recharge rapidly due to its depth. Clay soil.	
Monthly rainfall (min, max, average)	1263mm annually. Most rain occurs in the wet season Nov - Mar	
Incidence of flooding and bushfires	The bores are situated in and reasonably close to town and so are unlikely to be affected by bushfires. No incidences in recent years	

¹ CSIRO (2009) Water in the Mitchell region, pp. 347-416 in CSIRO (2009) Water in the Gulf of Carpentaria Drainage Division. A report to the Australian Government from the CSIRO Northern Australia Sustainable Yields Project. CSIRO Water for a Healthy Country Flagship, Australia. xl + 479pp

DNRM (2005) Hydrogeological framework report for the Great Artesian Basin resource plan area. Queensland Department of Natural Resources and Mines.

DERM, The Great Artesian Basin factsheet, February 2011, http://www.derm.qld.gov.au/factsheets/pdf/water/w68.pdf

Land use	Residential, pastoral
Agriculture, industry, mining	None
Potential sources of microbial and chemical	None
contamination in the catchment	

The bore heads are all raised with a concrete slab around the bores to seal them from surface water ingress. All bores are fenced and locked. Supply will be augmented with a third bore planned to be drilled in 2012. This will provide increased security of supply and help meet future demand. Summer demand has been readily met with 2 bores in the past; however their yield is steadily declining as expected due to clogging of the bore screens with age.

	Bore 1	Bore 2
Location	Adjacent to Council Offices eastern side of town Long 141.747404,	North-West of township. Adjacent to old slaughter house which is no longer operational
	Lat -15.472237 NRW bore no. 45019	Long 141.738764, Lat - 15.471058
Operation	Generally flows under artesian pressure to the ground level reservoirs. Pumps through a 670 m long 150 mm diameter pvc main to both ground level storage reservoirs. Refurbishment and/or replacement of the water mains was completed in 2011. Pumps commissioned in 2007 are necessary to deliver water at the end	Generally flows under artesian pressure to the ground level reservoirs. Pumps commissioned in 2004 are necessary to deliver water at the end of the dry season to satisfy the community water demand.
	of the dry season to satisfy the community water demand.	The two bores automatically alternate when the storages require filling. If Bore two is on and cannot meet demand, then
Aquifer type	Artesian Bulimba formation	Artesian Bulimba formation
% of supply	Bore one pumps water in sequence with bore two, they pump water constantly to reservoirs to meet demand until reservoir level is met then turns off, bore one delivers water at higher liters per second than bore two, demand much higher in the dry	Bore two pumps water in sequence with bore one, they pump water constantly to reservoirs to meet demand until reservoir level is met then turn off , bore one delivers water at higher liters per second than bore two, demand much higher in the dry
Reliability	Historically impacted during droughts. Artesian head drops during dry season, initiating pump via telemetry. Currently reliable supply with depletion date estimated beyond 2013. No rapid recharge from rain. Constructed around 1982	Historically impacted during droughts. Artesian head drops during dry season, initiating pump via telemetry. Currently reliable supply with depletion date estimated beyond 2013. No rapid recharge from rain. Constructed around
Pump type	Grundfos centrifugal 3-phase Backup generator at bore one in the process of linking into SCADA for automatic start up in the event of power failure	Grundfos centrifugal 3-phase No backup power for bore two
Capacity	18 L/s pumped, 5-6L/s natural flow	9 L/s pumped, 2-4 L/s natural flow

Bore depth (m)	220 including final 10m of screen.	220 including final 10m of screen.
Bore head details	Raised head. Qld Gov. approved design.	Raised head. Qld Gov. approved design.
Diameter, casing and material	200 mm, cased, cast iron with pvc	150 mm, cased, cast iron with pvc
Water quality issues	Naturally elevated fluoride and iron levels.	Naturally elevated fluoride and iron levels.

3.3 Treatment

The source is a bore protected from potential surface water microbiological contamination. In addition, the historical water quality also shows that having disinfection only is suitable, as a protective measure against potential reticulation contamination.

The only treatment is disinfection with liquid sodium hypochlorite before entering the reservoir storages. Chlorine dosage is controlled according to flow rate into the reservoirs. Adequate dosage is easily maintained during peak water usage and dose rate is also well controlled during low flow trickle into the reservoirs. By-passing chlorination is not possible. Any power failures would trigger an alarm on SCADA. There are no sources that do not undergo chlorination.

Disinfection

Location	Immediately after the supply flow meter prior to entering the storage reservoirs at the Water Compound/Depot Shed. Feed from bores 1 and 2 combine before disinfection. Bore 3 will be a separately disinfected pipe with duty and standby equipment. Bore 3 construction work has been suspended until further notice	
Туре	Sodium hypochlorite injection with 10% solution	
Dose rate	Varies according to inflow rate.	
Target residual level	Aim is for a routine residual of 0.2mg/L free chlorine in the reticulation network at 5 monitoring sites around town.	
Duty / standby	Two dosing pumps alternate automatically. Back-up generator available with auto start.	
Dosing arrangement	Flow paced based on flow into storage reservoirs	
Alarms	Failure, high/low. Approx. 1.99mg/L high alarm and approx. 0.08 mg/L k alarm at the pumps from storages into town.	
Chemicals added, storage and turnover	Sodium hypochlorite from 200L drums stored in a purpose built storage shed meeting Aus. Stds for safety, decanted into 1000L tank.	
Inspection schedule	Daily operational monitoring and inspection of equipment, recorded on daily work schedule.	

Reservoirs

Both bores combine to supply water to both reservoirs simultaneously. Supply from both reservoirs combines into a common main which feeds town.

Capacity	0.8ML	1ML	
Location	At the Water Compound/Depot Shed,	Same location.	
	Long 141.746935, Lat -15.475666		
	Constructed around 1997/1998	Constructed around 2007	
Туре	19.1 m diameter A-Betong concrete ground	Concrete, ground level. Epoxy coated	
	level. Epoxy coated inside.	inside.	
Roofed	Yes	Yes	
Vermin-proof	Yes	Yes	
Runoff from	Sloping roof directs run-off onto the ground	Sloping roof directs run-off onto the ground	
roof			
Cleaning	Approximately 12 monthly, lots of sediment accumulates		
schedule			

Filling	Major redirection of water configuration to avoid stagnate water and inconsistent chlorine readings of the past, have gone back to original engineer design before it was tampered with. Water flows to reservoir one and fills up until required level has been reached then shuts off bore flow. Water then runs into the .8 meg reservoir [once a certain depletion water level has been reached] via an actuating valve and fills up again to required height has been reached.
	Water from the .8 reservoir is then pumped out into the community

An old elevated storage reservoir was removed due to structural integrity issues with the stand which remains on site.

3.4 Distribution and Reticulation

Pumps into reticulation

Capacity	Up to 600kPa, 22 L/s at 17 m head. Grundfos CR64		
Duty/standby	Yes (3 pumps, generally not all required) - They auto adjust turbine speed		
	according to demand. They all run independently and share the work according to flow demand. They don't serve different regions of the reticulation. Back-up generator available with auto start.		
Inspection schedule	Daily as per work schedule Alarms – low pressure, power failure		

Reticulation network

Pipe material(s)	PVC.
Age range	Majority of reticulation was replaced in 2011. Existing pvc was
	installed in 1989.
Length of mains	16.5 km
Issues with dead ends	No
High pressure issues	No
Low pressure issues	No
Reticulation type	Pumped
Flushing schedule	Yes, yearly works schedule to remove sediments.
Still old AC line connected to water mains but not	
Feeding any houses	

3.5 Key Stakeholders

Organization	Contact name and details	Relevance to management of drinking water quality	How the stakeholders is engaged in the DWQMP
Kowanyama community	Particular vulnerable customers listed in Incident and Emergency Response section.	Consumers	Informed of water quality issues as they arise.
Chemical suppliers		Appropriate quality chemicals, availability and supply of stock	Drums have specifications printed on them e.g. strength, impurities. Ordered as needed - No issues with obtaining supply when required. Larger stock of chlorine kept on site over wet season of 4-7 months.
Office of the Water Supply Regulator (OWSR)	Office of Water Supply Regulator Incident Hotline: 1300 596 709 (24/7) PO Box 15456, City East QLD 4002	Drinking water supply regulator	Report incidents on 1300 596 709 when detection of <i>Escherichia coli</i> (<i>E. coli</i>) and chemical parameter above health guideline value in ADWG in potable water supply; Report an event likely to affect drinking water quality in potable water supply.
Cairn Public Health Unit, Queensland Health	Director Environmental Health Ph.: 4226 5604 PO Box 1103, Cairns, Qld 4870	Point of contact for assistance with public health issues related to water supply.	Provides advice during any public health incidents
CEO and Elected Council		Provides overall management, budget and finance resources to deliver services	Kept up to date and informed of water operations. Submits DWQMP to OWSR for approval.
Cairns Regional Council laboratory	Laboratory Manager Ph.: 4044 8344 PO Box 359 Cairns, QLD 4870	NATA certified laboratory where water samples are sent for analysis	Scheduled water samples from the drinking water supply are collected and sent to this laboratory for analysis.

4 Identify Hazards and Hazardous Events

4.1 Water Quality Information

A detailed annual water analysis of both bores revealed the following, all metals and physical parameters were well under the ADWG health guideline values, except fluoride being at the higher end of the recommended ADWG health guidelines

	Cairns Regional COUNCIL Water and Waste	Cairns Regional Council Wate Laboratory Services 38 MacNamara Street MANUNDA, QLD 4870 Australia	er & Waste		Tel: (07) 4044 8344 Fax: (07) 4044 8333 email: laboratory@cairns.qld.gov.au	Pro		e of Analy Il Report 070719 10354	ysis
Attention:	Greg Sandrey					nop		10004	
Client:		riginal Shire Council				Date Received:	2/07/2014	0.20am	
Addaman									
Address:	PO Box 994 NORTH CAIRNS	QLD 4871				Date Issued:	08-Jul-2014		
		The sample(s) referred to in this repo	rt were analysed by the fol	lowing metho	bd(s):				
Analysis		Method	Laboratory			NAT	A Accredited		
Anions		TPA280	Cairns Regional (ter & Waste (Accreditation # 14206)	\checkmark				
Anions - Fluori	de	TPA370	Cairns Regional (ter & Waste (Accreditation # 14206)	\checkmark				
CPMS Metals	- Total	TPC015	Cairns Regional Council Water & Waste (Accreditation # 14206)			\checkmark			
CPOES Metal	s - Total	TPC360	Cairns Regional Council Water & Waste (Accreditation # 14206)			\checkmark			
EC, pH, Alkalir	nity	TPP030, 050, 010	Cairns Regional (Council Wa	ter & Waste (Accreditation # 14206)	\checkmark			
Solids - Total I	Dissolved	TPP060	0		ter & Waste (Accreditation # 14206)		\checkmark		
Turbidity		TPP090	Cairns Regional (Council Wa	ter & Waste (Accreditation # 14206)		√		
		The result(s) in this report were aut	horised by:						
Name		Title			Qualifications				
Darren Saint		Scientist (Chemistry)			B. App. Sc. (Env. Science)				
Melissa Aalbe	ers	Scientist (Chemistry)			B. Sc. (Chemistry/Zoology) MRACI CChem				
Mark Butler		Scientist (Chemistry)			undertaking B. Sc.				
Robyn Lale		Technical & Quality Coord	. (LIMS Administrator)		B. App. Sci., MBA, MRACI C Chem				

This report should not be reproduced, except in full

Principal Contact for this Report:

the

Mark Wuth Laboratory Manager

Page 1 of 4

Cairns Regional COUNCIL Water and Waste	lient: Kowanyama Aboriginal Shire Council			Project No: Report ID: Date Issued:	070719 10354 08-Jul-2014 Page 2 of 4	
LRN: 219966		Date Sampled:	01-07-2014 11:00an			
Kowanyama - Bore No 1		Received at Lab:	02-07-2014 09:40an	n		
Method	Analyte	Result	LOR	Guidel	ine	Date Starte
Metals						
ICPMS Metals - Total	ICPMS Aluminium	0.007 mg/L	< 0.005			02-07-2014
	ICPMS Arsenic	<0.001 mg/L	< 0.001	≤ 0.01 mg	g/L	02-07-2014
	ICPMS Cadmium	<0.0001 mg/L	< 0.0001	≤ 0.002 mg	g/L	02-07-2014
	ICPMS Copper	0.041 mg/L	< 0.001	≤ 2.0 mg	g/L	02-07-2014
	ICPMS Iron	0.090 mg/L	< 0.01			02-07-2014
	ICPMS Lead	0.002 mg/L	< 0.001	≤ 0.01 mg	g/L	02-07-2014
	ICPMS Manganese	0.004 mg/L	< 0.001	≤ 0.5 mg	g/L	02-07-2014
ICPOES Metals - Total	ICPOES Silicon	20 mg/ L SiO2	<0.10			03-07-2014
	Calcium	0.90 mg/L	<0.20			03-07-2014
	Magnesium	0.71 mg/L	<0.10			03-07-201
	Potassium	3.0 mg/L	<0.10			03-07-2014
	Sodium	160 mg/L	<1			03-07-2014
	Total Hardness	5.2 mg CaCO3 / L	<1			03-07-2014
General Chemistry		·				
Solids - Total Dissolved	Total Dissolved Solids	340 mg/L	<1			02-07-2014
Physical Properties						
EC, pH, Alkalinity	Electrical Conductance	610 uS/cm	<1			02-07-2014
	pH	8.1	<0.1			02-07-2014
	Total Alkalinity	220 mg CaCO3 / L	<0.1			02-07-201
1968 Turbidity		0.2 NTU	<0.1			03-07-201
Nutrients and Anions		0.2 HTV				
Anions - Fluoride	Fluoride	15 mail	<0.02	≤ 1.5 mg	1/1	03-07-201
Anions Anions	Sulphate	1.5 mg/L	<1	2 1.0 III	<i>y</i> L	07-07-2014
	Chloride	<1 mg/L	<0.1			07-07-2014
		64 mg/L	<u>∼</u> 0.1			01-01-201

		C.I					
Cli Regional Current Viaste	ent: Kowanyama Aboriginal Shire Council			-	Project No: Report ID: Date Issued:	070719 10354 08-Jul-2014 Page 3 of 4	
LRN: 219967			Date Sampled:	01-07-2014 11:00a	m		
Kowanyama - Bore No 2			Received at Lab:	02-07-2014 09:40a	m		
Method	Analyte		Result	LOR	Guid	eline	Date Starte
Metals							
9973 ICPMS Metals - Total	ICPMS Aluminium		0.005 mg/L	< 0.005			02-07-201
	ICPMS Arsenic		<0.001 mg/L	< 0.001			02-07-201
	ICPMS Cadmium		<0.0001 mg/L	< 0.0001			02-07-201
	ICPMS Copper		0.038 mg/L	< 0.001			02-07-201
	ICPMS Iron		0.130 mg/L	< 0.01			02-07-201
	ICPMS Lead		0.013 mg/L	< 0.001			02-07-201
	ICPMS Manganese		0.004 mg/L	< 0.001			02-07-201
ICPOES Metals - Total	ICPOES Silicon		20 mg/ L SiO2	<0.10			03-07-201
	Calcium		0.76 mg/L	<0.20	· .		03-07-201
	Magnesium		0.71 mg/L	<0.10			03-07-201
	Potassium		2.9 mg/L	<0.10			03-07-201
	Sodium		160 mg/L	<1			03-07-201
	Total Hardness		4.8 mg CaCO3 / L	<1			03-07-201
General Chemistry							
9971 Solids - Total Dissolved	Total Dissolved Solids		350 mg/L	<1			02-07-201
Physical Properties			ooo nigiz				
9971 Turbidity			0.2 NTU	<0.1			03-07-201
9971 EC, pH, Alkalinity	Electrical Conductance		620 uS/cm	<1			02-07-201
	pH		8.2	<0.1			02-07-201
	Total Alkalinity		0.2 220 mg CaCO3 / L	<0.1			02-07-201
Nutrients and Anions	· · · · · · · · · · · · · · · · · · ·		220 mg 080007 L	-V. I			46 VI 6VI
	Fluoride		A.A. mak	-0.00	145		03-07-201
			1.4 mg/L	<0.02	≤1.51	ng/L	
9971 Anions	Sulphate		<1 mg/L	<1			07-07-201
	Chloride	*	71 mg/L	<0.1			07-07-201

Explanatory Notes for this Project

Responsibility for sampling lies with the CUSTOMER. Samples analysed as received.

Cairns Regional COUNCIL Water and Waste	Client: Kowanyama Aboriginal Shire Council			Report ID: 10 Date Issued: 11-	1064 404 Jul-2014 ge 2 of 2
LRN: 226109 Kowanyama - Bore No 2		Date Sampled: Received at Lab:	08-07-2014 1:30pm 09-07-2014 09:33an		
Method	Analyte	Result	LOR	Guideline	Date Started
Metals 28110 ICPMS Metals - Total	ICPMS Lead	0.001 mg/L	<0.001	≤ 0.01 mg/L	09-07-2014
Guideline Compliance Comment: This sample meets the NH&MRC (2	011) guidelines for drinking water for the parameters tested.				

Explanatory Notes for this Project

Responsibility for sampling lies with the $\ensuremath{\mathsf{CUSTOMER}}$. Samples analysed as received.

The water quality from the bores has remained consistent throughout the wet and dry seasons over the years. No obvious events were identified when assessing a spreadsheet of all daily routine water quality data records on site.

As a result of the assessment of these results, only relevant results were included in the Risk Assessment table.

No water quality complaints have been received from the community however some community members would rather not have chlorine added for disinfection of the water. One failed water sample came back from the Cairns laboratory in 2013-2014 recorded year of high E-coli reading , another sample was taken and was found to be ok so was put down to incorrect sampling technique.

22/11/2013

.

E.coli detection at school est. 1 CFU /100ML cau	sed by incorrect sampling technique
--	-------------------------------------

5 Assessment of Risks

5.1 Methodology

The methodology used for the risk assessment has been adopted from the OWSR publication *Preparing a Drinking Water Quality Management Plan Supporting Information (Sept 2010).* The definitions of likelihood, consequence and uncertainty are presented below.

Rare	Occurs less than or equal to once every 5 years
Unlikely	Occurs more often than once every 5 years and up to once per year
Possible	Occurs more often than once per year and up to once a month (12/yr.)
Likely	Occurs more often than once per month (12/yr.) and up to once per week (52/yr.)
Almost Certain	Occurs more often than once per week (52/yr.)

Consequence	Descriptors
Insignificant	Isolated exceedence of aesthetic parameter with little or no disruption to normal operation
Minor	Potential local aesthetic, isolated exceedence of chronic health parameter
Moderate	Potential widespread aesthetic impact or repeated breach of chronic health parameter
Major	Potential acute health impact, no declared outbreak expected
Catastrophic	Potential acute health impact, declared outbreak expected

Likelyhood		C	Consequence		
Likelyhood	Insignificant	Minor	Moderate	Major	Catastrophic
	Medium	High	High	Extreme	Extreme
Almost certain	(6)	(10)	(15)	(20)	(25)
Likely	Medium	Medium	High	High	Extreme
LIKEIY	(5)	(8)	(12)	(16)	(20)
Possible	Low	Medium	Medium	High	Highh
Possible	(3)	(6)	(9)	(12)	(15)
Unlikely	Low	Low	Medium	Medium	Highh
Uninkery	(2)	(4)	(6) Low	(8)	(10)
Rare	Low	Low	(3)	Medium	Medium
	(1)	(2)		(5)	(6)

Level of Uncertainty	Definition
Certain	There is 5 years of continuous monitoring data, which has been trended and assessed, with at least daily monitoring; or The processes involved are thoroughly understood.
Confident	There is 5 years of continuous monitoring data, which has been collated and assessed, with at least weekly monitoring or for the duration of seasonal events; or There is a good understanding of the processes involved.
reliable	There is at least a year of continuous monitoring data available, which has been assessed; or There is reasonable understanding of the processes Involved.
Estimate	There is limited monitoring data available; or There is limited understanding of the processes involved.
Uncertain	There is limited or no monitoring data available; or The processes are not well understood.

5.2 Acceptable Risk

Risks scored as Low were classified as acceptable risks. Risks with a rating of medium and higher in the risk assessment (unacceptable risks) have an associated item entered in the Improvement Plan later in this document. In a few places a risk score of Low also has an improvement action. In these places, the uncertainty level was high (estimate) hence it was decided to implement an improvement (or best practice). These risks will be re-evaluated during review of the DWQMP to ascertain that the risk level remains low (with an improved uncertainty level).

5.3 Hazard identification, risk assessment and uncertainty matrices

Catchment and source infrastructure

Hazard	Hazardous	Max risk			Existing preventive	Res risk			Uncertainty	Risk	Relevant
	event			Risk level	measures / barriers	Consequence	Likelihood	Likelihood Risk level		management improvement action	procedures & records
Bacteria (harmful)	Local pooling around bore head causing	Catastrophic	Possible	High	Bore head is raised and sealed to Australian and Qld Got standards.	Minor	Rare	Low	Confident		NA
Fluoride	Natural geology	Moderate	Almost certain	High	Draft factsheet on fluoride impacts and management options for community developed	Minor	Almost certain	High	Confident	Approve and distribute factsheet to community	NA
No water	Bore collapse, blocked screen	Major	Rare	Medium	2 bores, periodic inspections of bore head area(inspection sheet filled in)	Insignificant	Rare	Low	Confident		
Blockage of bores	Natural iron oxidizing bacteria cause blockage or increased sediment	Moderate	Possible	Medium	Natural aeration (drops from >.5m down inlet into reservoir)	Minor	Possible	Medium	Estimate	Chlorination of bores and assessment of presence and any future controls is scheduled for 2012. (DWQMPIP item 2)	NA
Metals, radiological (arsenic, manganese)	Natural geology	Moderate	Likely	High	Snapshot monitoring data shows no other hazards identified in local groundwater	Insignificant	Rare	Low	Reliable		NA

Disinfection process

Hazard	Hazardous event	Max risk	Existing preventive Res risk				Uncertainty	Risk management		
		Consequence	Likelihood	Risk level	measures / barriers	Consequence	Likelihood	Risk level		improvement plan
Bacteria (no	Chlorine dose	Major	Possible	High	2 pumps, SCADA	Minor	Unlikely	Low	Confident	
residual)	pump failure				alarms, daily					
					inspections					

	Insufficient chlorine contact time	Major	Possible	High	No short circuiting (Filled from top, mushrooms over). >30 minutes contact time prior to first customer	Minor	Unlikely	Low	Confident	NA
	Insufficient mixing of chlorine	Major	Possible	High	No short circuiting (Filled from top, mushrooms over).	Minor	Unlikely	Low	Estimate	Install solar bee mixers
	No chlorine stock	Major	Possible	High	Level in chlorine tank monitored via SCADA and alarmed, inspection Through work schedules. Regularly stocked	Minor	Unlikely	Low	Confident	
	Poor / weak chemical strength (Purchased). Degrading strength of chlorine (storage)	Major	Possible	High	Residual chlorine tested daily in treated water to adjust / increase chlorine dose rate	Minor	Unlikely	Low	Confident	
	Low dose	Major	Possible	High	SCADA alarms, daily inspections, Residual chlorine tested daily at reticulation sites to adjust / increase chlorine	Minor	Unlikely	Low	Confident	
Chemical	Overdose of chlorine	Major	Possible	High	SCADA alarms, daily inspections, Residual chlorine tested daily to adjust / increase chlorine dose rate	Minor	Unlikely	Low	Confident	
	Chlorate	Minor	Likely	Moderate	Staff write the date delivered on each drum on arrival. Stock used from oldest to newest.	Minor	Possible	Medium	Confident	

Reservoirs

Hazard	Hazardous event	Max risk			Existing preventive	Res risk			Uncertainty	Risk management
		Consequence	Likelihood	Risk level	measures / barriers	Consequence	Likelihood	Risk level		improvement plan
Bacteria (no residual chlorine)	Vermin entry, rainfall runoff from reservoir roof	Major	Possible	Medium	Both reservoirs roofed and water proofed, vermin proofed. Inspected as per work schedules. Disinfection.	Minor	Rare	Low	Confident	
Turbidity, iron deposits	Sediment build up	Moderate	Possible	Medium	Reservoirs drained and cleaned annually (as per work schedule)	Minor	Unlikely	Low	Reliable	
No water	Bore to reservoir pumps not working	Moderate	Possible	Medium	2 pumps, SCADA alarms, daily inspections, can fill through natural bore head	Insignificant	Rare	Low	Confident	
Structural integrity	From pH reacting with cement walls	Minor	Likely	Medium	Epoxy coating on reservoir insides	Insignificant	Rare	Low	Confident	

Reticulation

Hazard	Hazardous event	Max risk			Existing preventive	Res risk			Uncertainty	Risk management
		Consequence	Likelihood	Risk level	measures / barriers	Consequence	Likelihood	Risk level		improvement plan
Bacteria (harmful)	Pipe breaks / main breaks (age, pressure)	Major	Possible	High	New and refurbished water Mains (2011). Australian standards for main	Minor	Unlikely	Low	Reliable	
Bacteria or	Backflow from	Major	Rare	Medium	breaks repairs. Disinfection. Potential backflow	Moderate	Rare	Low	Reliable	
chemical	reticulation sites		Kale	Medium	points have mechanisms preventing this. E.g. Backflow Swing checks valves. RPZs, air brakes on tanks -	Moderate	Kale	Low	Reliable	
					brakes on tanks - located e.g.					

					systems, residential houses with storage tanks (all QBuild), hospital, batching plant.					
Turbidity	Pipe breaks / main breaks (age, pressure)	Moderate	Possible	Medium	New and refurbished water Mains (2011). Disinfection.	Minor	Unlikely	Low	Reliable	
No water	Pipe breaks / main breaks (age, pressure)	Moderate	Possible	Medium	New and refurbished water mains (2011)	Minor	Unlikely	Low	Confident	
	Failure of transfer pumps	Moderate	Possible	Medium	3 pumps, daily inspections.	Minor	Unlikely	Low	Confident	

Whole of Service

Hazard & Hazardous event	Max risk			Existing preventive	Res risk			Uncertainty	Risk management
	Consequence	Likelihood	Risk level	measures / barriers	Consequence	Likelihood	Risk level		improvement plan
Vandalism	Major	Possible	Medium	Bores and reservoirs fenced and secured.	Minor	Rare	Low	Confident	
SCADA failure	Major	Possible	Medium	24 hour technical service support from Cairns. Backup generator for power failure. Daily visual inspections of equipment monitored by SCADA.	Minor	Rare	Low	Confident	Upgrading SCADA system to stage 4.
Untrained staff (formally)	Major	Possible	Medium	On the job training, external training	Minor	Possible	Low	Reliable	Explore opportunities to upgrade staff skills.
Standard operating procedures	Major	Possible	High	SOPs present	Minor	Unlikely	Low	Confident	Ongoing – revised as required.
Staff safety - chemical handling	Major	Rare	Medium	Staff have been trained, no accidents	Minor	Rare	Low	Confident	

6 Managing Risks

6.1 Risk Management Improvement Program

The risk management improvement actions from the hazard identification and risk assessment matrices have been reproduced in the below table as the risk management improvement program.

Catchment and source infrastructure

Item	Hazard	Hazardous event	Risk management improvement action	Priority	Timeframe	Responsibility
1	Fluoride	Natural geology	Approve and distribute factsheet to community members	High	Oct 2012	ESM, Council, QH
2	Iron	Natural iron bacteria blocking bore screens and equipment	Shock treatment of bores planned to prevent growth of iron oxidizing bacteria (with Blue Block product)	Medium	Oct 2012	ESM
3	All	Significant change to scheme setup when third bore becomes operational	Update plan when operational E.g. schematic, risk assessment; monitoring and resubmit plan to OWSR	High	Suspended until further notice	ESM

Disinfection process

Item	Hazard	Hazardous event	Risk management improvement action	Priority	Timeframe	Responsibility
4	Bacteria (no disinfection residual)	Insufficient mixing of chlorine	solar bee mixers have been installed and reconfigured pipework back to original design	High	completed	ESM

Whole of Service

Item	Hazard and Hazardous event	Risk management improvement action	Priority	Timeframe	Responsibility
5	SCADA failure	Constantly up grading , system over hauled in 2014 so SCADA systems better communicate with each other	medium	On going	ESM
6	Increase relevant staff qualifications	Identify opportunities to upgrade staff skills (e.g. from Cert II to Cert III in Water & Sewerage).	High	On going	ESM
7	Operation and maintenance procedures	Include document control on procedures and records.	High	On going	ESM
8	Operation and maintenance procedures	Review to see that all maintenance activities are documented (as per preventive measures).	Medium	On going	ESM
9	Incident and Emergency response	Prepare community alert templates in preparation (e.g. obtain Qld Health templates)	Medium	On going	ESM

6.2 **Operation and maintenance procedures**

The following work checklists, records and procedures are used in the operation of the drinking water scheme. The ESM is responsible for delegating the tasks on the checklists.

Item Name	Date
Daily data record sheet (WQ monitoring results)	On going
Kowanyama Essential Services Work Schedule for Operation and Maintenance of Infrastructure – Daily and Weekly Checklist	On going
Kowanyama Work Schedule for Operation and Maintenance of Infrastructure – Monthly and Yearly Checklist	On going
Manufacturer's manuals for calibration of online monitoring (pH, chlorine); and for.	
SAMP customer complaint recording form	On going
SAMP incident report (internal)	On going
SAMP infrastructure repair record	On going
Water Alert notification template (developed by Qld Health)	NA

A paper copy of test records are kept in folders in the water shed office. Progress on meeting checklist actions is displayed on a chart on the walls of the water shed office and is reported to Council monthly by the ESM.

The ESM is responsible for developing and maintaining these documents and these are stored electronically on the ESM's computer. These documents are updated as needed. A version control book is used to record a summary of any changes to these documents, the date of change as well as the version number. An improvement plan item has been noted to include version identifiers on each procedure/checklist.

6.3 Management of incidents and emergencies

Alert Level	Description	Key management response(s)	Position(s) responsible
Level 3 or High: Emergency	 outbreak of waterborne disease declared disaster or emergency situation by the Council or state/national government Requires coordination across the provider (Council) departments and is likely to require external resourcing and support from agencies, such as Office of the Water Supply Regulator, Queensland Health, local disaster management groups, emergency responders QFRS, Police	Activate emergency response plan / disaster management plan Refer to summary of actions and procedures.	As per Council's lines of authority. For e.g. could be the ESM or CEO
Level 2 or Medium: Incident	 non-compliance (typically against the ADWG values) Event (anything that has happened or is likely to happen, in relation to a drinking water service that may have an adverse effect on public health). Examples include natural disaster (flood, drought), bushfire, inability to operate system within acceptable operational limits, contamination of source water, 	Activate drinking water incident response and reporting protocols. Ensure all control measures identified in the DWQMP are functioning effectively. Emergency response plan / disaster	ESM

The following levels of Incidents and Emergencies are used.

	contamination of treated water, terrorism. Incident likely to be managed within the team responsible for drinking water operations and management in line with their DWQMP. In some cases, it may require coordination across the provider departments (Council) and external resources and support, such as from OWSR, Queensland Health. Possible customer complaints.	management plan on standby. <i>Refer to summary of</i> <i>actions and</i> <i>procedures.</i>	
Level 1 or Low: Operational exceedence	 Exceedences of operational limits (e.g. low or elevated chlorine in reticulation, pH). Incident can be managed within the water operations team. An incident is not declared and the issue can be managed by local team in line with their DWQMP. 	Ensure all operational steps identified in the DWQMP are functioning effectively. Check and act upon operations and maintenance records	ESO (i.e. acts as a leading hand) or ESM.
		and procedures. Incident response and reporting protocols on standby. Refer to summary of actions and	

Response Actions

Most spare parts for components in the scheme are able to be flown in during the wet season if required when roads are cut-off.

The following summary of actions applies to each level of incident or emergency.

All level 2 and 3 incidents and emergencies are notified to the ESM who remains on call by mobile phone on **0408 078 876**. The water staff has been instructed on incident and emergency response protocols in order to operate autonomously where they have responsibility. An incident reporting flowchart is displayed on the wall of the water shed office.

Notification of Alerts about water quality

If an alert about the quality of the water was required to be distributed to the community the most effective method would likely be by posters and subsequent word of mouth.

Customers with vulnerable health may need to be notified by phone such as:

- Hospital
- School
- Retirement home

Alert Level	Key management response(s)	Brief summary of actions	Documented Plans & Procedures
Level 3 or High: Emergency	Activate Council's emergency response plan / disaster management plan	 Notify CEO immediately Coordinate notification, investigation and response of water related aspects Consider what community notification / messaging is needed (e.g. do not drink alert, boil water alert or bottled/emergency water distribution) Coordinate community messaging, for e.g. boil water alert, do not drink alert as required Notify OWSR as soon as practicable on 1300 596 709 (24/7), as per reporting requirements 	Emergency response / disaster management plan, including communications protocols, alert templates (boil water, do not drink, availability of emergency supply).
Level 2 or Medium: Incidents	Activate drinking water incident response and reporting protocols. Ensure all control measures identified in the DWQMP are functioning effectively. Emergency response plan / disaster management plan of Council on standby.	 Ensure ESM is aware as soon as possible. Notify OWSR on 1300 596 709 (24/7), as per reporting requirements Ensure all control measures identified in the DWQMP are functioning effectively. Commence investigation to determine cause if not traceable through the DWQMP Arrange for re-samples to be taken where required Instigate immediate remediation actions, including isolation of affected area where possible Review associated laboratory reports and operational records. Ensure emergency response plan / disaster management plan is on standby if the need arises. 	Incident response and reporting protocols. OWSR Water Quality and Reporting Guideline. Kowanyama DWQMP.
Level 1 or Low: Operational exceedence	Ensure all operational steps identified in the DWQMP are functioning effectively. Check and act upon operations and maintenance records and procedures. Incident response and reporting protocols on standby.	 Notify Leading Hand or ESM Review operations and maintenance records for anomalies Commence investigation to determine cause, if not identifiable through operational records Instigate immediate remediation actions Ensure all control measures identified in the DWQMP are functioning effectively. Increase operational monitoring frequency where required Ensure incident response and reporting protocols are on standby if the need arises. In case of customer complaints, coordinate investigation and resolution, including obtaining water samples where required 	Operations and maintenance schedules. Kowanyama DWQMP.

Incident responses and learning's from incidents are discussed informally with staff rather than being done by formal training sessions.

		709 (24/7), as per reporting requirements	
Level 2 or Medium: Incidents	Activate drinking water incident response and reporting protocols. Ensure all control measures identified in the DWQMP are functioning effectively. Emergency response plan / disaster management plan of Council on standby.	 Ensure ESM is aware as soon as possible. Notify OWSR on 1300 596 709 (24/7), as per reporting requirements Ensure all control measures identified in the DWQMP are functioning effectively. Commence investigation to determine cause if not traceable through the DWQMP Arrange for re-samples to be taken where required Instigate immediate remediation actions, including isolation of affected area where possible Review associated laboratory reports and operational records. Ensure emergency response plan / disaster management plan is on standby if the need arises. 	Incident response and reporting protocols. OWSR Water Quality and Reporting Guideline. Kowanyama DWQMP.
Level 1 or Low: Operational exceedence	Ensure all operational steps identified in the DWQMP are functioning effectively. Check and act upon operations and maintenance records and procedures. Incident response and reporting protocols on standby.	 Notify Leading Hand or ESM Review operations and maintenance records for anomalies Commence investigation to determine cause, if not identifiable through operational records Instigate immediate remediation actions Ensure all control measures identified in the DWQMP are functioning effectively. Increase operational monitoring frequency where required Ensure incident response and reporting protocols are on standby if the need arises. In case of customer complaints, coordinate investigation and resolution, including obtaining water samples where required 	Operations and maintenance schedules. Kowanyama DWQMP.

Incident responses and learning's from incidents are discussed informally with staff rather than being done by formal training sessions.

6.4 Service Wide Support – Information Management

The records of (daily) water quality testing by staff are kept indefinitely in a folder in the water shed. Water quality result sheets from the external laboratory are retained in hardcopy and on computer too.

Completed water operation and maintenance checklists, laboratory results and SCADA trends are also submitted in the ESM's monthly report to Council and Council retains records for at least 5 years.

The work checklists and form templates are stored on the ESMs hard drive and available from that

computer. Calibration of the spectrophotometer (measuring pH, CI, turbidity) in the water shed office

is undertaken externally and recorded on a sticker on it.

7 Operational and Verification Monitoring

All SCADA alarms on pump failure, power outages etc show on screen of the SCADA computer in the water shed, as well as sending a text message to the ESM's mobile phone. The ESM then directs responses to be undertaken.

The current operational monitoring program is presented below. The Environmental Health Worker normally collects the operational monitoring samples for chlorine around town and has also been taught by the Essential Services Manager. The ESM is responsible for assessing the operational and verification monitoring water quality results weekly and investigating any trends.

The operational monitoring program is appropriate to confirm and maintain the effective operation of the preventive measures due to the broad spectrum of sampling sites throughout the community. These parameters will ensure that the most significant hazard of harmful bacteria should not be present.

7.1 Operational Monitoring

In addition to periodic inspections of infrastructure as scheduled in the work checklists, water quality monitoring is also undertaken to ensure that the preventive measures remain functioning properly. The water quality monitoring sites in the reticulation have been selected to be at the extremities. The combination of chlorine measurement at the reservoir outlet and grab samples in the reticulation provides an indication of the chlorine demand in the system.

The following sample sites are used are used for operational monitoring:

- Water Shed (Long 141.746935, Lat -15.475666)
- Bore 1 (141.747404, -15.472237)
- Bore 2 (141.738764, -15.471058)

Reticulation sites:

- School (Long 141.745187, Lat -15.472174)
- Airport tap (141.749818, -15.482089)
- Hospital (141.746160, -15.475852)
- Trudy residence (141.745898, -15.470154)
- China residence (141.742983, -15.469419)

The following schedule is undertaken.

Process step /	Parameter	Associated		Sampling		Target limit	Action if target limit is not	Critical	Action if critical limit is	
location in system		hazard	Frequency	Method	Analysis		met	limit	exceeded	
Online chlorine analyzer at reservoir outlet (Water Shed)	Residual free chlorine	Bacteria (harmful). Also checks Iow/high chlorine dose	Continuous	Online analyzer	Online	>0.2mg/L, <2mg/L	Retest, check dosing pumps or calibration of instrument, further action dependent on findings, tell ESM.	>5mg/L <0.02mg/L	Retest, check dosing pumps or calibration of instrument, further action dependent on findings, tell ESM.	
	рН	Ineffective disinfection	Continuous	Online analyzer	Online	-	-	6.5 - 8.5	Assess why there has been a change from normal (e.g. Overdose of chlorine, bore change)	
Reticulation sites	Residual free chlorine	Bacteria (harmful)	Daily	Grab sample	In-house	>0.05mg/L, <2mg/L	Retest, check dosing pumps or calibration of instrument, further action dependent on findings, tell ESM.	>5mg/L	Tell ESM, consider retest, and check calibration of instrument.	
	рН	Bacteria (harmful)	Weekly	Grab sample	In-house	-	Retest, check calibration of instrument, further action	6.5-8.5	Tell ESM, consider retest, check calibration of	

Process step /	Parameter	Associated	Sampling			Target limit	Action if target limit is not		Action if critical limit is
location in system		hazard Frequency Method Analysis			met	limit	exceeded		
							dependent on findings, tell ESM. No ability to adjust pH exists.		instrument.
Bores	Turbidity	Bacteria (harmful)	Weekly	Grab sample	In-house	5 NTU	Ensure residual chlorine level is maintained. Increase dose rate as required.	10NTU	Ensure residual chlorine level is maintained. Increase dose rate as required.

Online instruments are calibrated when they are considered to differ significantly from the laboratory results obtained by staff.

7.2 Verification Monitoring (Reportable to DERMS)

Verification monitoring is used to confirm product quality and does not occur in real-time to allow immediate corrective actions. The current verification monitoring program is presented below. The Essential Services Officer normally collects the verification samples for *E. coli* and has been trained by the Essential Services manager as well as having Certificate II training water and sewerage. The verification monitoring program design is appropriate because of the lack of any other risks identified in the risk assessment, and the *E. coli* frequency is required for this community size. The sample sites were selected to be at places people gather.

Naturally occurring fluoride does not have a required monitoring frequency and is often stable at this level. The samples are transported to the Cairns laboratory in bins with ice bricks every Tuesday (flight days). The ESM is responsible for assessing water quality results as they become available.

The following sample sites are used:

- Bore 1 (Long 141.747404, Lat -15.472237)
- Bore 2 (141.738764, -15.471058)
- Pumps into town from the two reservoirs
- Council Office (141.747359, -15.472664)
- School (141.745187, -15.472174)
- Airport tap (141.749818, -15.482089)
- Hospital (141.746160, -15.475852)
- Water Shed (141.746935, -15.475666)

The following schedule is undertaken.

Parameter			Frequenc	y, method	Analyzing	Response to exceedence
	regulation value	Hazard	Bores	Town	authority	
<i>E. coli</i> , Total coliforms, Heterotrophic Plate Count	0 CFU/100mL <i>E.</i> coli	Pathogens (indicated by <i>E.</i> <i>coli</i> as an easy to monitor indicator)	Weekly, grab samples from each site are sent to Cairns lab	Weekly, grab samples from each site are sent to Cairns lab	Cairns Water lab	<i>E. coli</i> - Refer to tables describing incident and emergency management. Notify OWSR for town samples and complete incident reporting forms. Ensure residual chlorine level is maintained. Increase dose rate as required. Ensure bore head structural integrity and reservoir security, review sampling method used, retest, and investigate TC and HPC used as a microbiological indicator that system integrity may need investigation and increased disinfection.
Fluoride	<1.5mg/L	Fluoride	every	-	Cairns Water lab	Notify OWSR, ensure that control measure of factsheet is still being circulated
Complete water analysis	Refer to ADWG	Metals, physical & aesthetic parameters	Yearly	-	Cairns Water Lab	Assess any new hazards.

Kowanyama tests weekly at various locations for E-coli detection with the new E-coli testing apparatus and samples are sent every three months for verification of results to the Cairns laboratory. We also do fluoride readings, Heterotrophic plate counts and total coliforms IN Cairns when these samples are sent.

9 Appendix 2 – Snapshot Monitoring Water Quality Results

E-coli- temp plate used for weekly reading not saved on computer

Hospital			0		0
China			0		0
Airport			Closed		0
School			0		0
Trudy			0		0
Pool					0

Temp plate used for daily water testing saved monthly on computer

Kowanyama Aborigin	al Shire C	Council							
WATER SUPPLY - D		A RECOR	DS						
Only fill out the cells highlighted in yellow as there are formulas included that will automatically calculate the daily									
average.		MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY	SUNDAY	TOTAL Mon -
PUMPS	DATE:	8/11/2014	8/12/2014	8/13/2014	8/14/2014	8/15/2014	8/16/2014	8/17/2014	Fri
pH Pump 1									
hours									0
pH Pump 2									
hours									0
Bore 1									
Kiloliters									0
Hours									0
Starts									0
Bore 2									
Kiloliters									0
Hours									0
Starts									0
Bore 3									
Kiloliters									0
Hours									0
Starts									0
Bore 4									

Kiloliters					0
Hours					0
Starts					0
Observation Bore Depth Meters					
Rainfall					0
Clear water storage level 1.0ML	Formula = 1*#%				0.00
Clear water storage level 0.8ML	Formula = 0.8*#%				0.00

pH Reading							
p	Hospital	8.13	8.21	8.19	8.30	8.00	8.17
	China	8.12	8.07	8.19	8.15	7.97	8.10
	Airport	Closed	Closed	Closed	Closed	Closed	0.00
	School	8.10	8.22	8.23	8.26	8.18	8.20
	Trudy	8.06	8.29	8.19	8.30	8.19	8.21
	Pool						0.00
Chlorine FREE (CL2)							
	Hospital	0.05	0.20	0.28	0.16	0.25	0.19
	China	0.04	0.20	0.46	0.36	0.34	0.28
	Airport	Closed	Closed	Closed	Closed	Closed	0.00
	School	0.01	0.26	0.42	0.37	0.49	0.31
	Trudy	0.11	0.27	0.38	0.39	0.52	0.33
Chlorine Total (CL2)	Pool			-			
	Hospital	0.02	0.16	0.27	0.09	0.23	0.15
	China	0.03	0.17	0.41	0.34	0.34	0.26
	Airport	Closed	Closed	Closed	Closed	Closed	0.00
	School	0.01	0.26	0.37	0.32	0.46	0.28
	Trudy	0.15	0.23	0.33	0.38	0.52	0.32
	Pool						0.00
Fluoride	Every 3 months						
	`						0.00
							0.00

1	1								
									0.00
									0.00
7									0.00
									0.00
Turbidity	1				1				
	Hospital				0.48	1.81			2.29
	China				0.75	1.16			1.91
	Airport				Closed	Closed			0.00
	School				0.43	1.86			2.29
	Trudy				0.64	0.69			1.33
	Pool								0.00
SEWERAGE SUPF	PLY - DAILY	′ DATA RE	CORDS						
Only fill out the cells highlighted in yellow as there are formulas included that will automatically calculate the daily average.		MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY	SUNDAY	TOTAL
									Mon -
BORE PUMPS	DATE:	8/11/2014	8/12/2014	8/13/2014	8/14/2014	8/15/2014	8/16/2014	8/17/2014	Fri
Main Sewer Station 1	1				1				
Pump Hours pump 1									
Starts									0
Starte									0
Clean level probe									
Clean level probe									
Clean level probe Pump Hours pump 2									
Clean level probe Pump Hours pump 2 Starts									
Clean level probe Pump Hours pump 2 Starts Macerator Hours									
Clean level probe Pump Hours pump 2 Starts Macerator Hours Basket									
Clean level probe Pump Hours pump 2 Starts Macerator Hours Basket Clean pits									0
Clean level probe Pump Hours pump 2 Starts Macerator Hours Basket Clean pits Main Flow meter 1									0

Clean level probe									
Pump Hours pump 2									
Starts									
Basket									
Clean Pits									
Main Flow meter 2									0
Daily Run Time									0
Tavern Station									
Pump Hours pump 1									0
Starts									0
Pump Hours pump 2									0
Starts									0
Hose Pits									
Cabin Station			-					-	
Pump Hours pump 1									0
Starts									0
Pump Hours pump 2									0
Starts									0
Hose Pits									
	DATE:	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Mon - Fri
E-coli	location	8/11/2014	8/12/2014	8/13/2014	8/14/2014	8/15/2014	8/16/2014	8/17/2014	
	Hospital					0			0
	China					0			0
	Airport					Closed			0
	School					0			0
	Trudy					0			0
	Pool								0